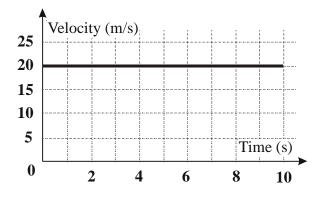


The following graphs refer to the motion of a 100 kg cart. For each case, sketch the velocity-time curve (from t = 0 to t = 10 s) then answer the questions.


- 1. The cart travels at a constant velocity of 20 m/s for 10 s.
 - a) What distance did it travel?

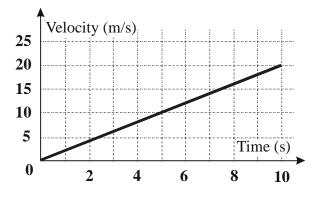
200 m (20 m/s)(10 s)

b) What was its acceleration?

Zero (System is at rest)

c) What was the resultant force? Zero (System is at rest)

- 2. From rest, the cart reaches a velocity of 20 m/s in 10 s.
 - a) What distance did it travel?


100m (20m/s)(10s)/2

b) What was its acceleration?

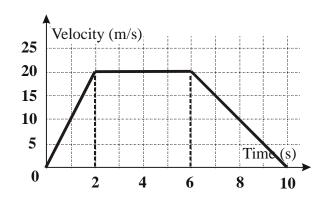
$$\frac{2ms^2}{4t} = \frac{20ms}{10s}$$

c) What was the resultant force?

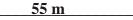
 $200 \, N \quad (F_R = ma = 100 \, kgx \, 2 \, ms^2)$

- 3. Starting at 25 m/s, the cart suddenly decelerates to a stop at a rate of 5 m/s^2 .
 - a) What distance did it travel? Velocity (m/s) 62.5 m (25m/s)(5s)/2 25 20 b) What was its acceleration? 15 -5m/s^2 $(a = \frac{\Delta V}{\Delta t} = \frac{-25\text{m/s}}{5\text{s}})$ 10 5 c) What was the resultant force? Time (s) -500N ($F_R = ma = 100 \text{ kgx} - 5 \text{ m/s}^2$) 0 2 8 6 Δ 10 Velocity (m/s) Starting at 10 m/s, the cart accelerates 25 uniformly to a velocity of 20 m/s in 10 s. 20 a) What distance did it travel? 15 150 m (10 m/s)(2 s)/2 + (10 m/s)(10 s) 10 5 Time (s) b) What was its acceleration? $(a = \frac{\Delta V}{\Delta t} = \frac{10 \text{ m/s}}{10 \text{ s}})$ 0 1 m/s^2 2 4 6 8 10 100 N $(F_R = ma = 100 \text{ kg x } 1 \text{ m/s}^2)$ c) What was the resultant force?
- 5. Starting from rest, the cart reaches a velocity of 20 m/s in 2 s. For the next 4 s, it maintains a constant velocity. It then comes to a stop by decelerating at 5 m/s².

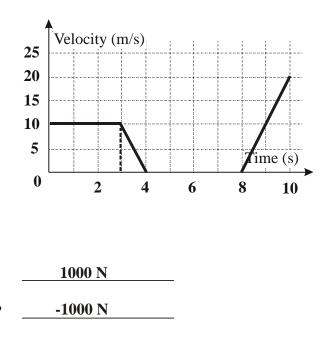
4.


a) What (total) distance did it travel?

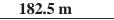
140m


b) How long did it take to decelerate?

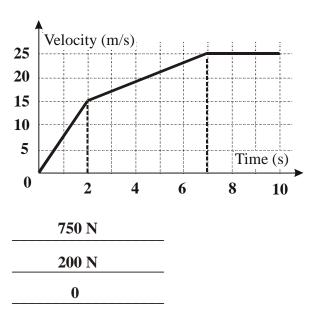
c) What was the *decelerating force*? _____


- 6. Starting at 10 m/s, the cart goes at a constant velocity for 3 s whence it decelerates to a stop in a time of 1 s. After remaining motionless for 4 s, it accelerates at 10 m/s^2 .
 - a) What (total) distance did it travel?

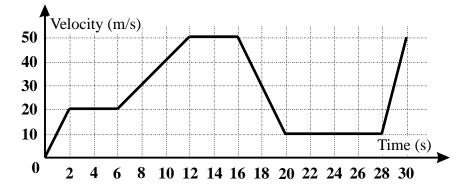
b) What was the *resultant force* at t = 2 s?


Zero

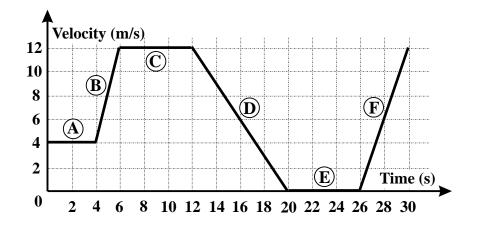
- c) What was the *accelerating force*?
- d) What was the *resultant force* at t = 3.5 s?



7. Starting at 20 m/s, the cart moves at constant velocity for 5 seconds. Velocity (m/s) 25 It then decelerates at 4 m/s^2 . 20 a) What (total) distance did it travel? 15 150 m 10 5 b) How long did it take to decelerate? Tin 0 2 4 8 5 s 6 10 c) What was the *decelerating force*? 400 N d) What is the velocity at t = 6 s? 16 m/s


- 8. From rest, the cart accelerates at 7.5 m/s^2 for 2 s. It then accelerates at 2 m/s² for 5 s after which it travels at constant velocity for the last 5 s.
 - a) What (total) distance did it travel?

- b) What was the resultant force at t = 1 s?
- c) What was the resultant force at t = 5 s?
- d) What was the resultant force at t = 8 s?



9. The graph below represents the velocity-time curve of a 1000 kg vehicle. Answer the following questions based on this graph.

a) Complete the table below listing the velocity, distance, acceleration and the resultant force at the specified times:

Time	Velocity	Distance	Acceleration	Resultant force
(s)	(m/s)	(m)	(m/s^2)	(N)
t = 1	10	5	10	10000
t = 4	20	60	0	0
t = 9	35	182.5	5	5000
t = 15	50	460	0	0
t = 22	10	650	0	0
t = 25	10	680	0	0
t = 29	30	730	20	20 000

a)	During which segment/s (A, B, C, D, E or F) is the object <i>accelerating</i> ?	B , F
b)	During which segment/s is the object <i>decelerating</i> ?	D
c)	During which segment/s is the object in <i>equilibrium</i> ?	A, C, E
d)	Which segment represents the <i>greatest velocity</i> ?	С
e)	Which segment represents the <i>least velocity</i> ?	Ε
f)	Which segment represents the <i>greatest acceleration</i> ?	В
g)	During which segment/s is the <i>resultant force zero</i> ?	A, C, E
h)	During which segment/s is the <i>resultant force positive</i> ?	B, F
i)	During which segment/s is the <i>resultant force negative</i> ?	D
j)	During which segment has the object traveled the greatest distance?	С
k)	During which segment has the object traveled the <i>least distance</i> ?	Ε
l)	During which segment is the resultant force the <i>greatest</i> ?	В
m)	What is the <i>average velocity</i> during segment-A?	4 m/s
n)	What is the <i>average velocity</i> during segment-F?	6 m/s
o)	What is the <i>average velocity</i> for the first 12 seconds?	8.7 m/s

~~~~~~~~~~~~~