

The following graphs refer to the motion of a 100 kg cart. For each case, sketch the velocity-time curve (from $t=0$ to $t=10 \mathrm{~s}$) then answer the questions.

1. The cart travels at a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ for 10 s .
a) What distance did it travel?

$$
200 \mathrm{~m} \quad(20 \mathrm{~m} / \mathrm{s})(10 \mathrm{~s})
$$

b) What was its acceleration?
Zero (System is at rest)

c) What was the resultant force?
Zero (System is at rest)
2. From rest, the cart reaches a velocity of $20 \mathrm{~m} / \mathrm{s}$ in 10 s .
a) What distance did it travel?

$$
100 \mathrm{~m}(20 \mathrm{~ms})(10 \mathrm{~s}) / 2
$$

b) What was its acceleration?

$$
2 \mathrm{~m} / \mathrm{s}^{2} \quad\left(\mathrm{a}=\frac{\Delta v}{\Delta \mathrm{t}}=\frac{20 \mathrm{n} / \mathrm{s}}{10 \mathrm{~s}}\right)
$$

c) What was the resultant force?

$$
200 \mathrm{~N} \quad\left(\mathrm{~F}_{\mathrm{R}}=\mathrm{ma}=100 \mathrm{~kg} \times 2 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

3. Starting at $25 \mathrm{~m} / \mathrm{s}$, the cart suddenly decelerates to a stop at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$.
a) What distance did it travel?

$$
62.5 \mathrm{~m} \quad(25 \mathrm{~ms})(5 \mathrm{~s}) / 2
$$

b) What was its acceleration?
$-5 \mathrm{~m} \mathrm{~s}^{2} \quad\left(\mathrm{a}=\frac{\Delta \mathrm{Av}}{\Delta \mathrm{t}}=\frac{-25 \mathrm{n} / \mathrm{s}}{5}\right)$
c) What was the resultant force?

$$
-500 \mathrm{~N} \quad\left(\mathrm{~F}_{\mathrm{R}}=\mathrm{ma}=100 \mathrm{kgx}-5 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

4. Starting at $10 \mathrm{~m} / \mathrm{s}$, the cart accelerates uniformly to a velocity of $20 \mathrm{~m} / \mathrm{s}$ in 10 s .
a) What distance did it travel?

$$
150 \mathrm{~m} \quad(10 \mathrm{~m} / \mathrm{s})(2 \mathrm{~s}) / 2+(10 \mathrm{~m} / \mathrm{s})(10 \mathrm{~s})
$$

b) What was its acceleration?
$1 \mathrm{~m} / \mathrm{s}^{2} \quad\left(\mathrm{a}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}=\frac{10 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~s}}\right.$)

c) What was the resultant force? $\quad \mathbf{1 0 0 N} \quad\left(F_{R}=m a=100 \mathrm{~kg} \mathrm{x} \mathbf{1 m} / \mathrm{s}^{2}\right)$
5. Starting from rest, the cart reaches a velocity of $20 \mathrm{~m} / \mathrm{s}$ in 2 s . For the next 4 s , it maintains a constant velocity. It then comes to a stop by decelerating at $5 \mathrm{~m} / \mathrm{s}^{2}$.
a) What (total) distance did it travel?

140 m

b) How long did it take to decelerate?

$4 s$
c) What was the decelerating force? \qquad
6. Starting at $10 \mathrm{~m} / \mathrm{s}$, the cart goes at a constant velocity for 3 s whence it decelerates to a stop in a time of 1 s . After remaining motionless for 4 s , it accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$.
a) What (total) distance did it travel?
\qquad
55 m

b) What was the resultant force at $\mathrm{t}=2 \mathrm{~s}$?
\qquad
c) What was the accelerating force?

1000 N
d) What was the resultant force at $\mathrm{t}=3.5 \mathrm{~s}$? \qquad
7. Starting at $20 \mathrm{~m} / \mathrm{s}$, the cart moves at constant velocity for 5 seconds. It then decelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$.
a) What (total) distance did it travel?
\qquad
b) How long did it take to decelerate?
\qquad
5 s
c) What was the decelerating force?
d) What is the velocity at $\mathrm{t}=6 \mathrm{~s}$?

400 N
$16 \mathrm{~m} / \mathrm{s}$
8. From rest, the cart accelerates at $7.5 \mathrm{~m} / \mathrm{s}^{2}$ for 2 s . It then accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 s after which it travels at constant velocity for the last 5 s .
a) What (total) distance did it travel?
\qquad
b) What was the resultant force at $\mathrm{t}=1 \mathrm{~s}$?
c) What was the resultant force at $\mathrm{t}=5 \mathrm{~s}$?

d) What was the resultant force at $\mathrm{t}=8 \mathrm{~s}$? \qquad
9. The graph below represents the velocity-time curve of a 1000 kg vehicle.

Answer the following questions based on this graph.

a) Complete the table below listing the velocity, distance, acceleration and the resultant force at the specified times:

Time (s)	Velocity $(\mathrm{m} / \mathrm{s})$	Distance (m)	Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Resultant force (N)
$\mathrm{t}=1$	$\mathbf{1 0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 0 0 0 0}$
$\mathrm{t}=4$	$\mathbf{2 0}$	$\mathbf{6 0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathrm{t}=9$	$\mathbf{3 5}$	$\mathbf{1 8 2 . 5}$	$\mathbf{5}$	$\mathbf{5 0 0 0}$
$\mathrm{t}=15$	$\mathbf{5 0}$	$\mathbf{4 6 0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathrm{t}=22$	$\mathbf{1 0}$	$\mathbf{6 5 0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathrm{t}=25$	$\mathbf{1 0}$	$\mathbf{6 8 0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathrm{t}=29$	$\mathbf{3 0}$	$\mathbf{7 3 0}$	$\mathbf{2 0}$	$\mathbf{2 0 0 0 0}$

10. The graph below represents the velocity of an object plotted as a function of time.

a) During which segment/s (A, B, C, D, E or F) is the object accelerating?	B, F
b) During which segment/s is the object decelerating?	D
c) During which segment/s is the object in equilibrium?	A, C, E
d) Which segment represents the greatest velocity?	C
e) Which segment represents the least velocity?	E
f) Which segment represents the greatest acceleration?	B
g) During which segment/s is the resultant force zero?	A, C, E
h) During which segment/s is the resultant force positive?	B, F
i) During which segment/s is the resultant force negative?	D
j) During which segment has the object traveled the greatest distance?	\mathbf{C}
k) During which segment has the object traveled the least distance?	\mathbf{E}
l) During which segment is the resultant force the greatest?	\mathbf{B}
m) What is the average velocity during segment-A?	$\mathbf{4 ~ m / s}$
n) What is the average velocity during segment-F?	$\mathbf{6 ~ m / s}$
o) What is the average velocity for the first 12 seconds?	$\mathbf{8 . 7 ~ m / s}$

o) What is the average velocity for the first 12 seconds?

